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16.  SOLID FJJEJ, RAMJETS 

by 

Robert L. Wolf and James W. Mullen  II 

16.1  HISTORICAL BACKGROUND 

The ramjet powerplant for aircraft propulsion, conceived 

nearly 40 years ago [22, 23], has been available in useful form 

for less than a decade.  Its deve_opers focused their efforts 

largely on liquid fuels, particularly hydrocarbons of the gaso- 

line or kerosene type.  Nevertheless, during the period of re- 

surgent interest occasioned by World War II, there was early 

recognition that solid fuels might offer certain design and 

performance advantages. 

Although the Germans were chiefly interested in coal and 

even wood, Sanger and Bredt [36] did suggest the use of metal 

dispersions to obtain higher flame temperatures and, Hence, 

thrust coefficients.  Lippisch [20] and Schwabl [37] were first 

attracted to solids because of the inherent simplicity of the 

fuel system in short-duration missiles and artillery or mortar 

shells.  They carried out numerous burner tests with briquetted 

carbon and natural coal charges, later extending the scope of 

their work to designs suitable for piloted aircraft. 

At Great Britain's National Gas Turbine Establishment, 

Roberson [33] prepared a theoretical performance survey cover- 

ing a very large number of solid fuels.  Actual experimental 

work appears to have been confined to aluminum and was conducted 
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by Wolfhard and Parker [30], Bowling [9], and Fennell [14] at 

the Royal Aircraft Establishment.  Some attention was also 

given to aluminum hydrocarbon slurries by Mazurkiewicz [25]. 

In this country, at the Applied Physics Laboratory of 

The Johns Hopkins University, Berl [8] developed techniques 

for improving the output of a lean propylene oxide burner 

through the addition of aluminum and magnesium powders.  At the 

Jet Propulsion Laboratory of the California Institute of Tech- 

nology, Bartel and Kannie [7] used carbon tubes in flow combus- 

tion tests and Alperin [1] considered the problem from a theo- 

retical viewpoint.  Damon and his associates at the Bureau of 

Mines [11] initially investigated coal for ramjet use, but 

later began to incorporate the light metals in their formula- 

tions.  Smith [39] extended to ramjet flow conditions the earli- 

er fundamental investigations of Hottel and his Massachusetts 

Institute of Technology co-workers [44,12,29] into the mechanism 

of burning carbon spheres.  The experimental phases of the pro- 

gram were continued under the direction of Hottel and Williams 

[3, 4].  Collins and Squiers of the Continental Aviation and 

Engineering Corporation intensively examined the application 

of magnesium to booster [24,40] and gun-launched [42] ramjets. 

To a lesser extent they also employed aluminum, boron, and 

napthaiene in their experimental program.  Wolf and others from 

Experiment Incorporated [46] assisted in the early magnes-.um 

fuel and burner development.  Two types of propellant charges 

resulted from this joint program.  Either of these ^ives satis- 

factory performance under the internal flow conditions obtained 

in supersonic ramjets and meet to a large extent all other re- 

quirements for operational feasibility.  Later, the effect of a 

solid or liquid dispersed phase, such as magnesium oxide, on the 

aerothermodynamic relations employed in ramjet design calcula- 

tions was examined [47].  The utilization of aluminum [48] and 
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boron [49] was also investigated.  Finally, a solid fuel pro- 

pulsion test vehicle, after extensive development in free-jet 

tests [50,53], was successfully flown [38,52] in the velocity 

range between Mach 1.8 and 2.1 on January 11, 1952.  Gammon 

[15,16,17,18] of the National Advisory Committee for Aeronautics 

has recomputed the theoretical air and fuel specific impulses 

of carbon, magnesium, aluminum and boron.  Branstetter, Lord 

and Gerstein [10] from the same* organization developed labora- 

tory means for feeding aluminum powder and wire to ramjet burn- 

ers.  At. the N.A.CA. Wallop's Island range Faget and Bartlett 

[13,28] have carried out free-jet tests on a system similar to 

that developed in the Continental Aviation program to determine 

its suitability as a carrier for the flight testing of aero- 

dynamic shapes.  Olson and Gibbons recently issued a compre- 

hensive review of the current status of the solid-fuel ramjet 

field [28],  It is believed that the North American Aviation 

Company had an interest in this subject, but little published 

information is available. 

Considerable attention has also been given to dispersions 

or suspensions of metals in hydrocarbon fuels.  Under Project 

BUMBLEBEE Berl [8] at the Applied Physics Laboratory and Anderson 

[2] at the University of Texas prepared relatively stable sus- 

pensions of sodium, magnesium, aluminum, and nickel.  In N.A.CA. 

investigations, Tower and Branstetter [43] employed a magnesium- 

hydrocarbon slurry while Gibbs and Cook [19] made boron the 

dispersed phase.  Gammon included these same systems in his 

theoretical study together with one wherein the metal portion 

was aluminum [15,16,17],  The Thompson Products Company has also 

indicated an interest in boron-oil dispersions [3l], 
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16.2  GENERAL CHARACTERISTICS 

Potential Advantages of Solid Fuel Systems 

The twofold opportunity oi a simpler, more reliable 

engine having a higher performance is the potent underlying 

incentive for studying solid fuel ramjet systems.  A resume 

of the arguments, pro and con, indicating the extent to which 

this objective is realized under present day "know-how" is a 

principal purpose of this section. 

Calculations indicate that sufficient fuel for short 

(approximately 20 miles) and perhaps intermediate range (100- 

200 miles) missiles can be stored within the combustion cham- 

ber proper without occasioning undue internal drag losses.  By 

this expedient, fuel tanks, pumps, meters, injectors and their 

associated plumbing, and even the pilot and flame holders, can 

be eliminated.  Means for effecting these component savings in 

long range missiles (>1000 miles) are not so immediately ap- 

parent.  The solution, if it exists, must be sought in multiple 

or externally packaged charges and in high-energy fuels having 

low burning rates. 

In considering the performance to be expected of solid 

fuels, all pertinent points can be illustrated by limiting the 

discussion to carbon, aluminum, magnesium, boron, and decaborane 

There are, of course, many other possibilities, but the broad 

technical screening available through Roberson [33] places them 

in their proper perspective relative to the foregoing selection, 

especially when economic considerations are taken into account. 

To facilitate comparison, data for kerosene (ANF-32) will be 

included. 
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In Fig. 16.2-1, theoretical air specific impulse, S , 

is plotted as a function of equivalence ratio, <f>,   for the sev- 

eral fuels.  A more detailed presentation of these calculations 

is given in the Appendix.  The inflection points in some of the 

curves are associated with phase changes in the exhaust products 

It is seen that in thrust-producing capabilities the three met- 

als and decaborane are superior to kerosene.  Carbon is slightly 

inferior but still comparable. 

A similar graph, Fig. 16.2-2(a), for theoretical fuel 

specific impulse, Sf, largely reverses this situation.  That is, 

the metals on a weight basis appear less economical in fuel con- 

sumption.  Strictly speaking, however, the comparison should be 

made only at a given level of thrust (i.e. of S ).  In Table 
St 

16.2-1, this has been done for  S  = 170, the maximum possible 

with kerosene.  On this basis the relative position of boron 

is not too unfavorable.   The boron hydride alone shows to ad- 

vantage.  Figure 16.2-2(b) extends the comparison to other 

thrust levels and shows that the advantage held by decaborane 

increases substantially at lower S  values. a 

Recent information indicates that heat of formation of B„0  is 
somewhat higher than that used in calculations in this chapter. 
Calculations using a higher heat of formation show boron to have 
a higher fuel specific impulse than kerosene over the entire S 
range l_ 56 1 . 
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On the other hand, in considering over-all missile per 

formance, volume is frequently as important a design parameter 

as weight.  Figure 16.2-3(a) gives the product of the fuel spe- 

cific impulse, S-„, and the fuel density, d, as a function of 

equivalence ratio.  The ratios in the last line of Table 16.2-1 

indicate that to maintain a given thrust level (S  = 170) for a 

fixed time, less storage space is required for the light metals 

and for decaborare than for kerosene.  With the exception of 

magnesium, the saving is considerable.  The use of Fig. 16.2-3(b) 

permits comparison at any thrust level. 

PracUCfll Difficulties 

If the advantages cited above are to be realized, a 

number of practical difficulties must be overcome.  Packaging 

the fuel within the combustion chamber to eliminate the fuel sys- 

tem components leads to complications as well as simplification. 

For example, the problem of obtaining fuel-charge geometries 

having sufficient surface exposed to the air stream to provide 

the necessary over-all rate of heat release, and yet remain 

compatible with the requirement of a low internal drag, plagued 

most of the early investigators.  In their reports are numerous 

drawings of very "unramjetlike" cages and grates for supporting 

coal charges.  On the other hand, if the fuel is fed to the 

burner as a finely divided powder, either in the pure form or 

suspended in a liquid carrier, not only is the complexity of 

the fuel-supply system enhanced over that originally required 

for liquid!* but much of the density advantage responsible for 

a high volumetric heat release is also lost.  These same con- 

siderations partly apply to a wire-type feeder. 
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When the advocate of solid fuels proudly discarded the 

fuel meter, he still could not escape the fact that some sub- 

stitute was required for the function of this useful device. 

The attainment of delicate thrust control with solid fuels 

still presents certain problems. 

The law of natural perversity seems to apply equally 

well to solid fuels.  The more desirable fuels from the very 

important aspect of specific fuel consumption are often the 

least reactive and most troublesome to burn.  Easy starting 

and high combustion efficiencies are more readily obtained 

with magnesium than with aluminum.  The evidence for boron, 

while currently incomplete, appears to bear out this trend. 

Even less is known about decaborane, though it should be quite 

reactive.  In the case of aluminum and boron the hard starting, 

Incomplete combustion, and tendency to slag formation, aside 

from chemical affinity considerations, may lie in the trans- 

port processes so important in heterogeneous reactions.  These 

systems can only react (a) by diffusion and/or convection of 

oxygen to the surface of the solid particle, reacting thereon 

with subsequent outward transport of the oxide to leave fresh 

material for further oxidation, or (b) by evaporation of the 

solid from the surface of the particle to the surrounding air 

followed by essentially vapor-phase reaction.  Table 16.2-2 

lists the melting and boiling points of several fuels and 

their oxides together with the approximate peak flame tempera- 

ture associated with the combustion process.  The transition 

points, like much of the other thermal data in these cases, 

are subject to some uncertainty.  The high boiling point of 

boron suggests that the first mechanism, i.e., diffusion of 

oxygen to the boron surface, is the more likely.  Further dif- 

ficulty is indicated by the low melting point and high boiling 

point of the oxide; that is, an adherent glassy film of this 

11 

CONFIDENTIAL 
TH'5 DOCUHCNT CONTAINS N^OAMAltO** AJFECTlNC rME NATtOtfAL OCffNSC OT 1H£ UNITED STAVES WITHIN 1H£ 
MEAhlWG Or T«6 f.aPKiN&Qt LAWS. TITLE 19. U.SC SECTIONS 793 LW 7?* TMF VAANSMISSIQN CR 
•Mt  KtVELATlCA* Of   ITS  CONTeKYS    Hi   ANY   U4KNE3    TO   AW   UNAUTHOftli EO    FtASON    S MUKeStTtO   Br  LAW 



CONFIDENTIAL 

t/> 
0) 
fc. 
3 
*J 
M 
hi 

CN- 0) 
1 g, 

(N H • v 
05 H 
H 

a 
W o 
_1 •H 
a *-> 
< •H 
H 05 

a 
«i 
h 
H 

•<* 
1-H o Oco oo 

M in Or-i mm 
O in »-* CQ •<*< N 
TH w CQ 

CQ 

* « 
o o CO 
in in t- 

O o W3 1 
csj «* 

o 
r—i     1 CO ot» oo 
< CO (Sei Ui liJ 

W ©n OCM 
OS C4C3 

o oo oo 
bo 05 in <M oo m o <LD i-< oo in 

en 1-1 IV! CO 

o OO oo 
•ST om in m 

CQ OO CO 1ft "<f C4 
e«a CNI CM OS 

o 
0 

«. CJ c_> u u 
0 O  0 

p. 
s **          ., •*•     «* 
ft> -       • »         a 

rc-< P, 0, A a. *      • »        o 

Q> S3 03 a>|a ea 
S          >H 'Di 
«         0) •H 
r-t        3 X 
PN       &* o! 

Ifl 
0) 
S 
•H 
H 
X2 
3 
W 
# 

-   12 

CONFIDENTIAL 
1MIJ duCUMFIT COHTAJNS WC-OMtTtOM AffECTING T>sf NATIONAL Kf!»5£ OF Tut UNiltC STATE 5 WITHIN IMF 

•if.-Ai.iii Of TH£ CSMOMAGT uw", TITLE l». U5C SECTIONS 7HJ AND 7S« IMF 'RANSUiiSiON Or 

TMc   HEVCLATIOW Of   ITS  CONTENTS    >N  ANT  KANNFF)    TO   «N   UNAUTHORIZED    PERSON '5 PROH dilEO   H    LAW 



CONFIDENTIAL 

material may seal the surface of the metal particle against 

subsequent reaction.  In contrast, the highly efficient mag- 

nesium combustion which has been achieved experimentally ties 

in with the low boiling point of that metal.  The magnesium 

particles probably evaporate at an early stage so that the 

main reaction is actually carried out in the vapor phase. 

In addition, under most circumstances the high melting point 

of the oxide would lead to a brittle, friable coating easily 

dispersed by aerodynamic forces.  Under this hypothesis alumi- 

num should occupy a position intermediate to boron and mag- 

nesium in difficulty of combustion, which is largely in keeping 

with the observed situation.  Carbon offers an example of a 

high "boiling" fuel which maintains a clean surface through the 

extreme volatility of its oxides. 

The problem of ignition in solid fuel charges has its 

own peculiar difficulties.  Some of the early coal burners took 

several seconds, even minutes, to bring up to a point of self- 

sustaining combustion.  An ignition lag of tenths of seconds or 

less is more in line with the starting requirements in many ram- 

jet applications. 

A number of the more interesting solid fuels have an ex- 

haust stream containing a finely dispersed solid or liquid 

phase.  Other than how to handle their effect in fluid mechani- 

cal expressions, they lead to heat transfer problems.  No longer 

held down by the low radiant component, of the transparent com- 

bustion products of conventional hydrocarbon fuels, wall tem- 

peratures can become dangerously high, especially if advantage 

is taken of the maximum flame temperatures available with cer- 

tain metals.  Measured losses through the combustion-chamber 

wall of a 2-inch magnesium burner have been 12 to 25 per cent 

of the total heat release [46],  This is roughly two to five 

times greater than observed with hydrocarbon fuels.  On the 
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ether hand. Tower and Branstetter [43] have reported a lower 

transfer to the walls when a given burner was run on hydro- 

carbon-magnesium slurries than when run on the pure hydrocar- 

bon.  Presumably, this was duo to the insulative effect of the 

oxide coating built up on the inner surface of the combustion 

chamber.  On a visit to Wallop's Island, the writers observed 

a thin, continuous film of oxide firmly adhering to the walls 

of the N.A.C.A. 6-inch magnesium burner [32].  The phenomenon, 

however, does not seem to occur to the same extent in their 

own 6-inch tests at Experiment Incorporated.  Obviously it 

would be desirable to induce the build-up of this seif-insula- 

ting layer with some degree of reliability.  All in all, fur- 

ther study of the heat transfer processes in solid fuel ram- 

jets is indicated. 

The same exhaust condition, high temperatures and smoke, 

is the source of another concern: i.e., interference with guid- 

ance or telemetering signals.  Since no work has been done 

along these lines on the systems of immediate interest, an in- 

vestigation is again indicated. 

Finally, there is the matter of economic considerations. 

The better fuels are not only the least reactive, but they are 

the most expensive.  Finely powdered magnesium can be bought 

today for $2,00 a pound, aluminum for $0.27, impure boron for 

$12.00 to $15.00, although the pure element is quoted between 

$250.00 and $400.00 per pound.  There have been informal indi- 

cations that this might be reduced in quantity production. 

Even so, one manufacturer has pointed out the improbability of 

the price of any suitable fuel ever dropping below $1.00 a 

pound [45].  In the case of decaborane any meaningful price 

would be difficult to establish today.  For missile application, 

the position taken by Longwell [21] is probably sound.  That is, 

if one considers how expensive guided missiles are on both a 
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i 
! total and a unit weight basis, and the importance of insuring 

a successful mission, a fuel that offers operational advan- 

tages should not be eliminated on a price basis unless the 

fuel cost approaches the cost of the missile. 

Applications 

To be valuable any consideration of applications should 

be based on those characteristics wherein solid fuel ramjets 

possess superiority over other forms of propulsion.  Thus, in 

the earliest German work mortar and artillery shells [20] would 

appear to be a more appropriate subject for investigation than 

piloted subsonic aircraft [361.  Mechanical simplification of 

the fuel supply and combustion systems, with the accompanying 

increase in reliability, is an obvious asset in all of the sug- 

gested applications and, therefore, will not be touched upon 

again. 

Pursuing this only logical approach that the characteris- 

tic should determine the application, the high air specific im- 

pulses available with certain solid fuels suggest some form of 

booster device or self-accelerating ramjet [34,40,24].  Where 

the missile end use can tolerate relatively long acceleration 

periods, the initial velocity car; be achieved by release from 

conventional aircraft.  The boost to final design velocity can 

then be achieved by a high thrust, solid fuel charge simply 

packaged within the combustion chamber of a conventional hydro- 

carbon ramjet.  Alternatively, a small rocket can be used to 

establish the initial velocity and the second stage boost be 

accomplished as before, with the additional possibility of an 

externally mounted engine. 
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The high volumetric specific fuel impulse of many solid 

fuels, particularly in the lower thrust ranges comparable to 

hydrocarbon performance, provides an opportunity for the de- 

velopment of useful midcourse sustainers [51,35).  The feasi- 

bility of this application, of course, also depends on the 

weight, mechanical complexity, and external aerodynamics of 

the mechanism required to incorporate the sustainer drive in 

the main missile. 

Boron or certain of its solid hydrides more effectively 

illustrate the characteristic of high volumetric specific fuel 

impulse and oper vhe question of long-range missile applica- 

tions.  Unfortunately, only cursory investigations have been 

made of this possibility.  The problem is not simple, gravi- 

metric specific fuel impulse and methods of mechanically hand- 

ling the i re! charges being only a few of the other influential 

factors. 
High stagnation temperatures with resultant overheating 

of the fuel has been one deterrent to flight at speeds much in 

excess of Mach No. 3.  Metal fuel charges may obviate at least 

part of this difficulty in the development of hypervelocity 

ramjets [6] . 

Experimentally, it has been shown that the combustion 

efficiency of magnesium-fueled burners is relatively insensi- 

tive to lowered inlet pressures.  Extreme altitude ramjets may 

be possible through the utilization of this characteristic. 

Many solid fuel charges have excellent mechanical prop- 

erties, e.g., compressive strength, and. therefore, can with- 

stand the stresses of a short boost period.  For example [42], 

powdered magnesium briquettes have been tested successfully at 

accelerations up to 26,500 g.  Because of this it appears 

feasible to design gun-launched ramjets more reliable than 

those originally suggested by Tromsdorf.  Preliminary calcula- 

tions show that even with diffuser efficiencies as low as 
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40 per cent a muzzle velocity of 4000 fps can be sustained and 

even increased during the flight of the projectile [6].  Other 

studies show that roughly three pounds of a solid fuel would 

propel a 20-pound low velocity mortar shell nearly 9000 yards 

[6].  Continental Aviation and Engineering Corporation has in- 

dicated that artillery shells having ranges on the order of 150 

to 200 miles may be within reach.  One modification of the sol- 

id ramjet charge can be employed to reduce base drag in more 

conventional shells, thereby providing worthwhile increases in 

range (5 ]. 

An interesting application to underwater ramjets stems 

from the observation that certain light metal charges "burn" 

as well under water as in an air stream in accord with the 

reaction: 

2A1 + 3H20—>  A1„03 + 3H£ -*• 1,106,000 BTU/ft3 Al. 

The same fuel could also be confined to generate gas for 

some form of turbopropeller drive. 

In the foregoing discussion only generalized applications 

based on the chemical and physical properties of solid fuel 

charges were indicated.  The weapons designer will see for him- 

self numerous combinations of these features provocative of more 

detailed consideration in air-to-air [54,55], air-to-ground, 

ground-to-air, ground-to-ground, intercontinental, and other 

missile fields.  Flat-trajectory, high-penetration anti-tank 

ordnance is suggested.  Simple projectiles for saturation bom- 

bardment at greater than rocket ranges are apparent.  The em- 

ployment of solid ramjets for the routine testing of aerody- 

namic forms as attempted by N.A.C.A. has considerable poten- 

tiality.  These and numerous other opportunities await explora- 

tion. 
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16.3     BURNER PERFORMANCE 

Fvel Charges 

Two types of fuel charges [40,46] are available in a 

sufficiently advanced developmental state to warrant considera- 

tion in current application studies.  Both types employ finely 

powdered fuel, mixed with small amounts of an inorganic oxi- 

dizer and molded under pressure in the desired geometric shape. 

A low percentage of some organic binder is incorporated to im- 

prove the physical strength of the briquette.  This general 

formulation was tested by the Germans [20,37] almost at the 

outset of their program.  They did not, however, carry the 

work to its logical conclusion, having been discouraged by the 

extensive fracture of the charge during burning, which re- 

sulted in over half the fuel being discharged as large unburned 

fragments. 

The first type, known as the annular charge, is illus- 

trated in Fig. 16.3-l(a).  A more versatile modification, the 

split-flow annular charge [53,54], is shown in Fig, 16.3-l(b). 

In either case, a rapid-burning pyrotechnic composition is 

integrally molded to the upstream face of the fuel charge. 

This charge is touched off with a commercial black-powder squib 

imbedded therein to supply instantaneously the ignition energy 

for the main charge.  The average delay from the moment of 

closing the firing sv/itch to development of full thrust is on 

the order of 0.2 second.  Alternatively, part of the ignition 

charge and squib can be mounted in the form of a flare exter- 

nal to, but directed at, the rapid-burning upstream face of 

the main charge.  This technique minimizes the possibility of 

fracturing the main charge oy the initial explosion.  The flame 

from the fast-burning booster layer traverses the passage through 
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the center of the annular charge, igniting the inner surface 

over its entirety.  The principal combustion then ensues radi- 

ally and progressively toward the outer wall.  Only when a 

very thin shell cf fuel remains does the charge break up.  The 

fuel losses attributable to this cause are minor and in small 

burners seldom exceed more than about 5 per cent of the total 

charge.  It does, however, lead to a moderate roughness in the 

last second or so of burning, as can be seen on a typical 

thrust chart reproduced in Fig. 16,3-2. 

The key to successful performance of these charges is 

the small content of inorganic oxidizer.  Although the quanti- 

ties present are insufficient to sustain combustion in the ab- 

sence cf the air stream, they do serve to stabilize the flame 

at the surface of tre charge and possibly to sput er hot parti- 

cles (and vapor) of unburned fuel toward the center of the duct 

for better mixing and contact with the atmospheric oxygen.  It 

is this latter function of "built-in" fuel injection which forms 

the basis of the second or flare-type charge shown in Fig. 16.3- 

1(c).  Now the oxidizer content has been increased to the point 

where the surface combustion, though still very fuel-rich, is 

self-sustaining in the absence of air.  Upon ignition at the 

open end of the container, the surface recedes longitudinally 

in the so-called "cigarette-burning" manner.  Very hot fuel 

particles, or under some circumstances, fuel vapor are ejected 

with considerable velocity into the main air stieam.  The prob- 

lem of controlling the shift in center of gravity of a missile 

during burning appears at first sight more serious with the 

flare than with the annular charges.  The internal burner drag 

with all three types of charges seems to be in the range of 4 

to 8 inlet dynamic heads. 
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UPPER LINE ~ lb/inz(gouge)  IN BELLOWS ON THRUST STAND 

[lbs thrust = !. 14 t !b/in2(gouge)] 

LOWER LINE ~ FLAME PRESSURE lb/in2(gouge) 

TIME SCALE = 2.5 SECONDS PER DIVISION 

Fig. 16.3-2  TYPICAL THRUST CHART 
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In the development of these charges the principal effort 

has centered on the use of nowdered magnesium as fuel in con- 

junction with sodium nitrate as oxidizer.  Linseed oil was or- 

dinarily employed as the binding agent.  Molding pressure was 
o 

1200 lb/in  leading to a charge density of 1.35 as compared to 

1.74 for the pure metal.  Where extremely tough charges are re- 

quired, higher pressure molding has produced charge densities 

between 1.5 and 1.6 [42].  Efforts to burn pure aluminum powder 

[48] have been complicated by poor ignitability, flame "blow- 

out" after ignition, low combustion efficiency, and slag for- 

mation in burner components or in the nozzle.  One explanation 

for these difficulties has already been offered.  The most 

practical remedy uncovered to date appears to lie in admixture 

with magnesium and use of higher nitrate concentrations.  Cer- 

tain additives, such as sulfur, have been found beneficial, 

whereas the normal alumina fluxing agents, such as cryolite, 

have had little effect.  Although these "diluted" aluminum 

preparations do not permit full realization of the higher volu- 

metric heat content of this fuel, they nevertheless offer an 

improvement of at least 35 per cent over the better magnesium 

fuels in this respect.  Figure 16.3-3 outlines the variation in 

volumetric heat content of charges containing different mag- 

nesium-aluminum ratios as well as sodium nitrate contents.  The 

best all-round experimental mixture contains 5 per cent of sul- 

fur and is also included on the chart.  Charge densities are 

roughly 70 per cent of the pure metal.  Efforts to burn crude 

amorphous boron (86 per cent pure) have met with similar, but 

even more severe, difficulties.  One apparent drawback is that 

in using amorphous boron the charge density seems limited to 

the relatively low region of 50 per cent of the bulk density of 

the element.  This obstacle can probably be overcome with cry- 

stalline boron powder if such becomes available. 
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The entire study of fuel types has been handicapped by 

the lack of a laboratory equipped for the preparation of pow- 

dered alloys and intermetallic compounds.  Small amounts of 

calcium are said to lower the "ignition temperature" of mag- 

nesium.  Other combinations undoubtedly offer other advantages, 

particularly in developing satisfactory fuels based on alumi- 

num and boron.  The possibilities inherent in alloys can never 

be explored as long as formulation is limited to mechanical 

mixtures of commercially available powders. 

Linear Burning Rate 

Of prime interest to the ramjet designer is the thrust 

coefficient of the over-all engine.  A basic determinant of 

this quantity is the burner air specific impulse and this in 

turn depends strongly on the air-fuel ratio or more conveni- 

ently the air-fuel equivalence ratio.  In conventional ramjets 

the fuel meter controls and regulates these three important 

parameters for various design and flight conditions.  In solid 

fuel ramjets the fuel-metering function is an inherent property 

of the fuel charge which is manifested as its linear burning 

rate.  Thus, the weight flow of fuel, m_ (lbs/sec), is given 

by the product of the linear burning rate, V. (in/rain), the 

total area of the burning surface, S (in ), and the density, 
q 

d, of the charge in lbs/ft , or: 

V1S d 
mf = 103,680 
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In annular charges S is the surface area of the internal pas- 

sage, but in flare charges it is the c^ss-sectional area. 

The linear burning rate is also important when taken together 

with charge geometry in determining the burning time or dura- 

tion of the flight. 

In general, the linear burning rate is determined by 

formulation variables: e.g., 

1. Fuel type, 

2. Size and shape of fuel particles, 

3. Type and concentration of oxidizer, 

4. Particle size of oxidizer, 

5. Type and concentration of binder, and 

6. Density of charge. 

and by burner-design variables, e.g., 

1. Equivalence ratio, 

2. Charge temperature, and 

3. Air mass flow per unit cross-sectional area 

of central air passage (annular charges). 

Considering the first group, few significant comparative 

data are available today on the differences in basi<; burning 

rates of various pure fuels.  In order to get aluminum to burn 

at a satisfactory combustion efficiency, it has to be formula- 

ted in a 4-to-l or possibly a 6-to-l ratio with magnesium and 

"doped" with 10 per cent sodium nitrate and 5 per cent sulfur. 

That this charge has roughly the same linear burning rate as a 

magnesium one containing only 5 per cent sodium nitrate is but 

rather weak evidence for aluminum having a lower basic rate. 

In any event, the designer will probably select the fuel on a 

thermodynamic basis so that discussion of the other formulation 

variables is more to the point. 
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Under present supply conditions the size and shape of 

the fuel particle is also a minor factor.  Roughly speaking, 

the burning rate might be expected to increase with a decrease 

in particle size.  The observed change, with magnesium at least, 

was insignificant between -70 and -200 mesh.  As to particle 

shape, ground magnesium with its rough irregular particles 

(compared to the regular spheres of the atomized material) 

burned poorly.  The rough particles, however, compact to give 

a harder charge, and the decrease in combustibility may have 

been due to the density effect described later. 

When compared on the basis of available oxygen, differ- 

ent oxidizers are probably of greater importance in determining 

main fuel dilution and charge stability than burning rate.  Thus 

substitution of potassium nitrate or potassium perchlorate for 

sodium nitrate would have a beneficial effect on moisture up- 

take during storage.  On the other hand, variation in the con- 

tent of a given oxidizer is one of the strongest and most prac- 

tical means of influencing burning rate.  Table 16.3-1 indicates 

the extent of the control available in a 6-inch annular-charge 

system in which other flow and burner variables have been held 

constant [40j. 

Mixtures with slightly higher concentration (15 per cent) 

of nitrate are capable of self-sustained combustion in the ab- 

sence of air and form the basis of the flare-type charge with 

burning rates of 20 in/min, and in certain Bureau of Mines for- 

mulations, as high as 180 in/min [11].  A third form of com- 

bustion intermediate between the annular and flare type has 

been observed with low nitrate concentrations, particularly 

with aluminum.  Labeled "fizz burning", an annular charge is 

ignited at its downstream face and "cigarette burns" in the up- 

stream direction.  The recirculation zone at the bluff burning 

face plays a stabilizing role similar to that in the ordinary 
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TABLE 16.3-1 

Linear Burning Rate in Magnesium Charges 

as a Function of NaNO» Content 

(2% Linseed oil, 0 1) 

Per Cent NaNOg V., in /mln 

0 (2.4)* 

2.5 2.8 

5.0 3.7 

7.5 5.1 

10.0 7.3 

12.5 12.0 

* Extrapolated 
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baffle-type flame holder, Though relatively unexplored, linear 

burning rates as low as 1 in/min appear possible under altitude 

conditions with this technique. Since large fuel flows are not 

required for high-altitude operation, the way may be opened for 

achieving the long burning periods (>30 minutes) required for 

intercontinental flight. 

With some oxidizers, particle size appears to be a rate- 

controlling factor.  In a 7.5 per cent sodium nitrate annular 

charge the burning rate increased linearly by 75 per cent when 

the mesh size of the nitrate was decreased from -40 +70 to 

-140 +200. 

Changing the type and concentration of binder serves a 

better purpose when employed to tailor the physical properties 

of the charge.  Thus, substituting rubber cement for linseed 

oil [41] raises the compressive strength of a magnesium charge 

by a factor of 6.  Ordinarily, the linseed-oil charges crush at 
2 

roughly 1200 lbs/in .  Since one of the principal difficulties 

with boron charges is their poor structural properties, this 

type of substitution can be very important.  Of less practical 

use is the 60 per cent decrease in burning rate when the lin- 

seed-oil content of a magnesium-ammonitim dichromate charge is 

raised from 1 to 5 per cent. 

Little leeway is available for controlling the burning 

rate of annular charges by changing their density, because of 

the overriding need for high structural strength.  The tech- 

nique may, however, become useful in adjusting the burning rate 

of the mechanically supported flare-type charge.  For example, 

the rate of a SIg-15% sodium nitrate flare can be increased from 

20 in/min at a specific gravity of 1.25 to 45 in/min by molding 

at a sufficiently lower pressure to obtain a specific gravity 

of 0.75. 
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Equivalence ratio and initial charge temperature were 

included, perhaps somewhat arbitrarily, in the list of burner- 

design variables which could be employed to establish control 

over burning rate.  Only a brief discussion of their effects is 

warranted, since there is little here of utility to the designer, 

The burning rate is almost constant with equivalence ratio, de- 

creasing no more than 5 per cent as an initial equivalence ratio 

of 0.5 is enriched to 1.5 in the lower nitrate charges (approxi- 

mately 5 per cent sodium nitrate).  The effect is somewhat 

greater at higher nitrate concentrations but still amounts to 

no more than a 10 per cent decrease over the same range in 10 

per cent sodium nitrate compositions.  The temperature effect 

is similarly small.  Lowering the charge to -80°F resulted in a 

10 per cent decrease in air specific impulse in the 190-200 

range [40], and it is probable that only a part of this loss 

can be ascribed to a lowered burning rate. 

The third item in this group, i.e., the observation that 

the linear burning rate of the annular charges is a strong func- 

tion of the air mass flow through the central passage, is one of 

great significance.  The magnitude of the effect is illustrated 

in Fig. 16.3-4.  An eightfold decrease in air mass flow per unit 

cross-sectional area produces a roughly threefold decrease in 

burning rate.  In brief, the solid fuel ramjet has a self- 

metering characteristic which at least partly compensates for 

the otherwise large changes in air-fuel ratio that would be ex- 

pected as the ramjet operated across broad ranges of speed and 

altitude.  Since the data points in Fig. 16.3-4 were obtained 

by both varying the mass flow at constant inlet pressure through 

the use of nozzles and by lowering both pressure and mass flow 

in an altitude test stand, it is believed that the parameter 

selected for the abscissa is sufficiently definitive for design 

purposes.  Intensive study may, however, reveal that a more 
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general expression in terms of separate pressure and velocity 

functions can be written.  For example, static tests on flare- 

type charges have shown that the burning rate decreases with 

lowered pressures [11]. 

Thrust Control 

Since the primary objective of controlling the burning 

rate is the subsequent control of the thrust output of the en- 

gine, it is desirable to broaden the discussion in the latter 

terms.  There are two connotations to the phase "thrust con- 

trol".  The first implies reproducibility, and the problem is 

little different from that encountered in solid-propellant 

rockets.  The data listed in Table 16.3-2 indicate that even 

when no extraordinary quality-control procedures were employed 

in the formulation stages, reasonable reproducibility was ob- 

tained.  The second implication is one of variable thrust to 

meet varying flight conditions.  Several methods for meeting 

this requirement in solid fuel ramjets will be outlined in the 

following paragraphs. 

The simplest and most direct approach is to take advan- 

tage of the self-metering characteristic just discussed.  Con- 

sider a 6-inch diameter missile of the form sketched in Fig. 

16.3-1(a).  Table 16.3-3(a) summarizes the performance expected 

over the flight Mach number range of 1.2 to 2.4 at sea level. 

It is apparent that a constant air specific impulse condition 

can be established and that the net thrust relationship above 

Mach 1.6 is at least compatible with a uniformly accelerating 

trajectory.  A free-jet test at Mach 1.6 checked these re- 

sults insofar as a burning time of 12 seconds and a minimum 

air specific impulse of 184 were obtained.  Table 16.3-3(b) 
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TABLE   16.3-2 

Thrust  Reproducibility  in Magnesium Burners 

Run No. Charge Type ma 0 Burn Time S 
a 

Lbs Thrust 

X67 2-ln  Annular 0.66 0.74 3.5 sec 172 
168 ti tt 0.81 3.3 170 
170 ti tt 0.64 3.8 175 
171 ti tt 0.74 3.5 172 

175 it 0.44 0.81 4.8 172 
176 *» 11 0.74 5.0 167 
177 tt M 0.76 5.0 170 

74 2-in  Split Flow 22* 0.35 4.0 146 
75 tl tt 0.35 4.1 148 
82 tt tt 0.34 4.4 148 

85 ** » 0.24 5.6 12S 
86 tt It 0.24 5.6 126 

68 tt 16* 0.37 5.2 139 
89 tl " 0.38 5.9 145 
67 tt *t 0.39 5.0 144 
69 t» tt 0.41 5.4 150 

76 tt 10* 0.24 6.6 124 
77 tt tt 0.24 S.6 120 
78 t« tl 0.23 6.9 114 

9 6-in  Split Flow** 13.5 330 
10 tt 13.0 330 
12 tt 13.5 320 
20 ft 13.5 310 
24 It 13,5 320 
25 

1 
it 14.0 320 

*     */o   total m    thru center of  charge 
A 

** Free-jet  tests   (M    -  1.57;  2! " 3-°> 
Ao 
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TABLE 16.3-3U) 

Constancy of Impulse at Sea Level over Velocity Range 

Flight Macn Burning 
            i f  — - 

S 
a CT CD 

' Net Thrust 
No. Time, Sec 0 Lbs 

1.2 18.8 0.85 189 0.44 
1.4 15.0 0.82 188 0.53 
1.6 11.1 0,80 187 0.62 0.29 250 
1.8 9.8 0.81 188 0.56 0.27 ^75 
2.0 s.r- 0.86 190 0.51 0.25 300 
2,2 7.4 0.88 191 0.45 0.24 295 
2.4 6.4 1.04 193 0.40 0.23 285 

Constancy of Impulse at M 

TABLE   16.3-3(b) 

1.8  over  Altitude  Range 

Altitude. 
Ft x 10"* 

Burning 
Sa CT D 

Net Thrust 
Time, Sec 0 Lbs 

0 9.8 0.81 198 0.56 0.27 275 
5 12.5 0.75 186 0.57 0.27 235 

15 14.8 0.85 189 0.65 0.27 200 
25 22.4 0.87 190 0.73 0.28 160 
35 30.4 0.91 192 0.82 0.29 120 
45 

  

40.0 

•      — 

1.10 195 0.85 0.30 75 

Estimated  performance  of  missile  calculated  on  basis  of: 

1. 
2. 
3. 
4. 
5. 

7. 
8. 
9. 

10. 

Diffuser ratio - 4:1 
Burner drag coefficient • 6 
Diffuser efficiency - 60fc 
No tail constriction 
Burning rates from experimental results at Continental Aviation 
and Experiment Incorporated (Fig. 16.3-4) 
The 3  for various air-fuel ratios was taken from data obtained 
in 8-inch burner by Continental Aviation 
Fuel weight - 22 pounds 
Size of charge • 4 in I.D. x 6 in O.D. x 30 in long 
Fuel composition - 93% llg , 5% NaNC,, 2%     linseed oil 
Shock on rim at M 1.6, spilling below, swallowed above. 
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extends the performance calculations to level flight at a 

series of altitudes.  Again, in spite of the fact that the 

air mass flow has suffered an eightfold change between sea 

level and 45,000 feet, the air specific impulse is sur- 

prisingly constant. 

The foregoing basic technique can be given greater 

flexibility and made subject to more precise control by going 

to the split-flow type of design [Fig. 16.3-1(b)].  The inser- 

tion of a flow metering orifice at the downstream end of the 

canister eliminates the trend to an Increasing S  as the burn- 

ing surface becomes larger toward the end of the run.  A com- 

parison of the two thrust-time curves in Fig. 16.3-5 illus- 

trates the effectiveness of this device.  Performance predicta- 

bility is further enhanced by the maintenance of &  constant 
internal drag.  In practice mild steel orifices have heir? uy 

quite well in magnesium burners, but graphite or ceramic ori- 

fices are required for aluminum.  Proper selection of the area 

ratio of the internal and external air passages is, of course, 

important.  The main goal is to have the central flow reduced 

or raised automatically, depending upon whether the temperature 

produced therein increases or decreases because of altered in- 

let conditions in flight.  This aerothermodynamic "choking" 

control is in the same direction as, and supplements, the in- 

herent self-metering characteristic of the charge. 

A still further refinement would be the installation of 

a valve arrangement (e.g., a butterfly or rotating sleeve in 

the extension to the inlet of the central duct).  The position 

of the valve would be coordinated with the momentary thrust 

demand imposed on the engine throughout its flight and maneu- 

vering path. 
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70O 

6 8 

TIME (seconds) 

Fig.    16.3-5     EFFECT  OF  METERING  ORIFICE  AT  DOWNSTREAM 
END  OF  FUEL   CHARGE  ON  THRUST  FROM   SIX-INCH   SPLIT-FLOW 

BURNER 
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No attempt will be made to detail the many other possi- 

bilities for thrust control.  Their number is limited only by 

the ingenuity of the designer.  For the purpose of suggestion, 

several approaches can be listed. 

1. Combinations of flare and annular charges. 

2. Multiple charges of one or both types 

sequentially fired. 

3. Formulation of charges.  Entire charge 

can be altered, or longitudinal and radial 

variations can be introduced in a pro- 

grammed manner. 

4. Missile can be overpowered and servo- 

activated drag spoilers added. 

5. Controlled diffuser bleeds. 

8.  Variable-area intakes and exhausts, 

including combustible arrangements 

fabricated from the fuel composition. 

Burner Efficiency 

In Fig. 16.3-8 the experimental air specific impulse ob- 

tained under sea-level and altitude conditions with both flare 

and annular magnesium charges is plotted as a function of equiva- 

lence ratio.  A 2-inch diameter burner was employed in most of 

the runs, the only exception being a 4-inch unit in the altitude 

runs with annular charges.  The theoretical air specific im- 

pulse-equivalence ratio curve for magnesium is included.  Em- 

ploying the ratio of observed to theoretical S  as a measure of a 
impulse efficiency, it is seen that all of the points are above 

the 80 per cent level and the majority above 85 per cent.  These 
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percentages may be slightly inaccurate, since absence of ther- 

modynamic data for sodium oxide prevented exact determination 

of the effect of the sodium nitrate in development of the theo- 

retical S curve.  Also, the data have not been corrected for a 
heat losses to the chamber walls.  Of particular interest is 

the fact that the impulse efficiency seems to suffer but little 

from the lowered pressure conditions of the altitude runs. 

This is more clearly shown in Pig. 16.3-7 where the impulse ef- 

ficiency is plotted as a function of combustion-chamber inlet 

pressure.  For comparison, a typical performance curve for a 

2-inch burner operating on a homogeneous vapor-phase hydrocar- 

bon fuel is given [?«*]. 

Further impulse-efficiency data are given in Table 16.3-4. 

The first five runs show that the 2-inch annular magnesium 

burner appears to reach maximum efficiency in a 24-incb tail- 

pipe.  Excessive heat losses to the walls probably account for 

the lower efficiencies with the very long chambers.  The S 

values have not been corrected for these losses which, by di- 

rect measurement, amou .ted to 23 per cent and 12 per cent re- 

spectively in runs 236 and 225.  Under similar conditions with 

hydrocarbon burners where the heat loss is about 5 per cent, 

an efficiency of 85 per cent is obtained with a 14-inch tail- 

pipe [27]. 
The next eight runs indicate the generally more efficient 

operation observed in the split-flow annular type of system. 

The heat losses through the wall appear to be small, and the 

downstream mixing processes are enhanced by this technique. 

Here the initial combustion within the core of the charge is 

quite rich (# » 1.5 to 4).  The resulting heat release is, how- 

ever, Still sufficient to vaporize magnesium.  The secondary 

and principal combustion thus occurs under the favorable condi- 

tion of rapid turbulent admixture of two gaseous streams.  The 
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split-flow system also allows improved fuel economy.  Thus, 

the same performance outlined in Table 16.3-3(a) for a 6-inch 

missile at an S  of 190 can be obtained at 140 by adjusting 
EL 

the inlet area for higher air mass flows.  This, of course, 

cannot be done with the simple annular charge, since then the 

effect of a greater mass air flow is merely to increase the 

burning rate and hence the S & a 
The next three runs reveal that further gains can be 

found in the judicious use of mixing devices.  The 6-inch 

diameter split-flow charge gave an impulse efficiency of 88 

per cent under Mach 1.83 conditions in a free-jet test,  A 

small perforated "can" mixer (see Chapter 3) attached to the 

downstream end of the charge increased this figure to between 

92 and 93 per cent.  No intensive effort was made to optimize 

the mixing system.  These impulse efficiencies correspond to 

combustion efficiencies (based on equivalence ratios) of the 

order of SO per cent. 

The highly doped aluminum and boron charges described 

in an earlier section burned with impulse efficiencies of ap- 

proximately 90 and 80 per cent respectively, the theoretical 

S  in each instance being based on the actual formulation used 

Combustion Limits 

As ordinarily used, "combustion limits" have little j 

meaning in systems where the "diffusion" of atmospheric oxygen 

to a solid surface is an important preliminary to subsequent 

reaction.  That is. the range of stable burning is extraordi- i 
i 

narily broad.  The runs in Fig. 16.3-6 lie between equivalence | 

ratios of 0,25 and 3.3.  These are not true limits, however, 

but merely the change extent of the investigations.  Thus, in 

the split-flow burners the combustion within the charge is of- 

ten carried out at equivalence ratios in excess of 4. 
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NOMENCLATURE 

Symbol                  Definition Units 

(f> equivalence ratio 

S air speciiic impulse ib-sec/lb a 

Sf fuel specific impulse lb-sec/lb 

S f air-fuel specific impulse lb-sec/lb 

mf fuel flow rate lbs/sec 

m air flow rate lbs/sec 

V. linear burning rate in/min 

2 
S total area of burning surface in 

r ratio  of   specific  heats 
3 

d fuel   density lbs/ft 
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APPENDIX 

THEORETICAL AIR SPECIFIC IMPULSE, FUEL SPECIFIC IMPULSE, 

FLAME TEMPERATURE, AND EXHAUST COMPOSITION 

FOR SEVERAL SOLID FUEL SYSTEMS 

In making the impulse calculations the usual relations 

were employed, i.e., 

S . 4/2(7 I 
af   f    ygm 

I)  RI 

m. 
S  - S . (1 + -1) , a   af     m  ' a 

s 
m 

1 S_, (1 + -*). 
X    a.J. m „ 

If the exhaust stagnation temperature is in degrees Kelvin, R 

becomes 2776 ft~lbs/°K/lb mol.  The acceleration due to gravity. 
o 

g, is 32 ft/sec and the air and fuel mass flows, m and m„, are '                                          '  a     i ' 
in lbs/sec.  The presence of the solid (or liquid) phase in the 

exhaust was allowed for in the manner suggested by Maxwell, 

Dickinson, and Caldin [Aircraft Engineering, XXIII, 212, (IG46)J. 

The tarsi, m, which is the average molecular weight for a gaseous 

exhaust, is now taken as the weight of exhaust gases plus the j 

weight of exahust solids divided by the mols of exhaust gases 

only.  The specific heat ratio, y,   is computed as the C  for 
the exhaust gases plus the C of the exhaust solids divided by j 

i the C for the exhaust gases plus the C  for the exhaust solids. v p ! 
Temperature and velocity equilibrium between exhaust gases and 

exhaust solids are assumed.  That this procedure leads to no 
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inaccuracies ii excess of 5 per cent in the range of solid-gas 

ratios considered was demonstrated by direct experimental in- 

vestigation (Reference 47 in text).  The thermodynamic data 

employed are indicated in footnotes to Tables 16A-1, 16A-2, 

16A-3, and 16A-4.  Many of these data are questionable so that 

the values for the theoretical performances of magnesium, 

aluminum, boron, and decaborane should, be employed only in 

realization of this fact,  It was assumed that no heat was 

available from phase changes (condensation and crystallization) 

during the passage of the stream from the combustion chamber 

tnrough the exit section.  The accuracy of this assumption is 

difficult to determine, but at least it leads to conservative 

theoretical performance figures.  In the case of magnesium at 

the stoichiometric ratio, if the heats of fusion and evapora- 

tion are available, the S  is 242, but if unavailable, this is 
£L 

lowered to 220. 
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